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INTRODUCTION

Sulfur has been associated with the reduced environmental resistance of nickel-
base superalloys [1,2]. The sulfur causes the protective aluminum oxide to spall
and greatly reduces the life of coatings, e.g., thermal barrier coatings. Most of the
nickel-base superalloys have bulk sulfur contents of less than 12 ppm; however,

these alloys exhibit internal and external surface sulfur concentrations that can
exceed 1,000 ppm [3,4]. If the surface sulfur is removed either mechanically or
chemically, the surface sulfur concentration quickly returns to these high levels
upon annealing. The sulfur diffuses to the surface against a high concentration
gradient in apparent opposition to Fick's Laws.

The explanation, in part, is that sulfur reduces nickel's surface energy and that the
chemical potential of sulfur on the surface of nickel is significantly less than in its
interior. Small amounts of elements such as S, C, N, 0, and P which tend to
segregate to surfaces can causs a profound change in surface energy [5,6,7].
These surface active elements are also known to affect the surface tension of
other metals [6,8]. The presence of 0.07 wt.% nitrogen in liquid iron reduces its
surface energy by nearly 15%. As little as 0.09 wt.% oxygen can lower the surface
energy of liquid iron by nearly 30% [5], and 0.1 wt.% sulfur reduces iron's surface
energy by nearly 50% [8].

Sulfur is an unusual element. It exhibits allotropes in its solid, gas, and liquid

forms. In the sclid form, it is found in the rhombohedral, monoclinic and amorphous
phases with specific gravities of 2.07, 1.96, and 1.92 respectively. Sulfur is a low
melting point element: it melts at 112.8'C (rhombohedral) and boils at 444.670C.
Figure 1 is a plot of the equilibrium partial pressure of sulfur as a function of
temperature [9]. This would seem to indicate that by merely raising the tempera-
ture of a nickel specimen above the boiling point of sulfur one could readily remove
sulfur by evaporation. The fact that sulfur does not behave in this manner indicates
that it is not in its elemental form.

The sulfur effect in superalloys can be reduced either by reducing sulfur's mobility

within the alloy or by actually removing the impurity from the part. The first method
is used commercially. Reactive eiements such as yttrium or hafnium are added to
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the alloy as sulfur getters. The resulting sulfur compounds are too low in concen-
tration to affect bulk mechanical properties, but sulfur is immobilized and cannot
segregate to the surface. The second approach, which has a potential economic
advantage over the first (alloying with reactive elements is expensive and difficult),
involves reducing the bulk concentration of sulfur in as-cast parts to !ess than
1 ppm. Sulfur has been successfully removed from alloy surfaces by reaction with

hydrogen gas at high temperatures [10]. Surface sulfur reacts to form gaseous
hydrogen sulfide., Sulfur is known to concentrate on free surfaces and internal
interfaces. This ensures a continuous replenishment from the bulk of the sample
and concentrations below 1 ppm have been achieved.

100-
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Figure 1. Vapor pressure of eleme ital sulfur as a function of temperature.

This paper examines the thermodynamics and kinetics of nickel desulfurization by
hydrogen desulfurization and presents idealized models to quantitatively describe
the process.
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APPROACH

PHYSICAL MODEL

Tile physical model is a closed system: a furnace, nickel specimen, and an

atmosphere of 100% H2. The furnace is assumed to be much larger than the

specimens. The nickel specimens are in the form of sheet and have a finite

thickness ranging from 0.38 to 1./8 mm (15 to 70 mils). The length and width of the
sheet is large enough with respect to its thickness to be considered infinite. The

furnace is used to anneal the nickel specimens at 1200 and 1250*C and a pressure

of one atmosphere. The temperatures were selected to be high enough to assure
rapid sulfur removal but below the solution heat treatment temperature of today's

superalloys in order to maintain the material's microstructure and properties.

THERMODYNAMIC MODEL

The initial sulfur concentration of the nickel specimen is assumed to be 10 ppm;

the sulfur is taken to be in solid solution. The concentration of sulfur on the surface
of the nickel specimen is assumed to be 1000 ppm, a typical value reported in the

literature[3,4]. A monatomic, amorphous layer of Ni3S2 is assumed to exist on the
surface of the nickel sheet. This is consistent with the following da0,." (i) elemental

sulfur boils at temperatures exceeding 444.670C, (ii) all the binary nickel-sulfur

compounds are molten in this temper&ture regime, and (iii) sulfur is . resent in such
low concentrations that only the nickel-rich compound Ni 3S2 is compositionally

stable.

Free energy data taken from the JANAF Thermochemical Tables [11] was used to
ssess the stability of the various nickel-sulfur compounds arid those of '-12 , H2S,

aind HS. A linear regression analysis was used to generate equations for free

c nergy as a function of temperature, Eq. 1. Equation constants are presented in
Table 1.

AGo= A+BT (1)
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Table 1. Constants for the Free Energy of Formation of
Various Sulfides at a Constant Sulfur Activity.

Compound Temperature Range, °C A (KJ/mol) B (KJ/mol °K)

H2S 900-2000 -181.02 0.0991

HS 900-2000 232.5 -0.1727

NiS 1100-2000 -212.35 0.0906

NiS 2  1200-1800 -186.37 0.120

Ni 3S2  1000-2000 -240.81 0.0652

Ni 3S4  900-1100 -261.44 0.153

A plot of the free energies of formation for the various compounds considered is

presented in Figure 2. The more negative the free energy of formation is for a

particular compound, the more thermodynamically stable the compound., With the

exception of NiS 2 (not stable at low sulfur levels), all of the nickel-sulfur compounds

are inherently stable with respect to H2. Conditions under which desulfurization can

occur are discussed in the Results and Discussion section of this paper.

50-
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Figure 2. Gibb's free energies of formation for several compounds of sulfur.
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KINETIC MODEL

At the elevated temperatures under consideration it is reasonable to assume that

the reaction of hydrogen with Ni3S2 present on the specimen's surface is rapid.
The continued elimination of sulfur in this manner requires that the sulfur in solid

solution nickel diffuse to the specimen's surface. This solid state diffusion is then

assumed to be the rate limiting step in the process.

In order to model the kinetics of the process, the physical model described
previously has been adopted and the following additional conditions are imposed:

1., The elimination of sulfur is accomplished by the diffusion of sulfur outward

to both sides of a plate of thickness, h. The length and width of the

specimen is large enough with respect to thickness to be considered

infinite.

2. The effective concentration of sulfur at the specimens surface is taken to

be zero. In light of the empirical evidence indicating that the surface sulfur
composition is approximately 1000 ppm [3,4], justification for this assump-

tion is as follows. The surface sulfur is tied up as a monatomic layer of

Ni 3S2 not in solid solution and the chemical potential of sulfur in this form is

believed to be extremely small.

The solution of the problem requires the application of Fick's second law, Eq. 2;

and the following boundary conditions:

C= Co for0 < x< h, at t=0

C=0 for x= h and x= 0, at t> 0

C d 2C
Dt Dx 2  (2)

The value of the diffusion coefficient can be calculated using Equation 3 [10].

D = 1.4exp ,- (cm 2 /S) (3)
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whera 0 = 218,600 (J)
R = 8,314 (J/mol°K)
T = Temperature (*K)

The diffusivity of sulfur in a variety of metals is presented in Figure 3. The diffusion
coefficient of sulfur in nickel at the temperatures of interest has values ranging
from 2x10 -9 to 4x10 -7 cm 2/s [12]. The solution to equation 2 under the boundary
conditions stated above has been worked out by other researchers [13]. The
equation describing the compositional profile is presented in equation 4.

C(x,t) =4Co 1 sin (2j+1)1r exp (2j+1)2  r2 .Dt (4)
7 ,,, 2j +1 h IL

The equation for the average composition of the specimen Eq. 5 is obtained by
integrating equation 4 over the specimen thickness.

C-C s = 8 1 expF -(2n + 1)2r21 Dt (5)
C. _ CS 

= 2 = (2n + 1)2  Lh 2

SURFACE RECESSION RATE

The rate of nickel loss, the rate at which the specimen's surface recedes during
thermal treatments may be calculated using equation 6. This problem may be
modeled by assuming either diffusion controlled kinetics or the Langmuir-Kundsen
model based on ideal gas law kinetics.

dx = JM I (6)
dt p

Diffusion Controlled Model:

If the flux of nickel from the specimen's surface into the hydrogen gas environment
is assumed to be diffusion controlled, then the flux may be modeled using equa-
tion 7.. The application of this equation is difficult because the diffusion coefficient
of nickel in hydrogen gas is unknown, the conentration profile of nickel is also
unknown, and the atomic flux is a function of bo"i position and time.
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Figure 3. The diffusion coefficient of sulfur in several elements.

J =_ -D ~ iexp(. ))J (7)

In~ order to estimate the diffusion coefficient, the semi-empirical equation 8 [14]

was used.

D=3 [,rkT 1(8
8 2m nird2

where the m is

M = HMA, (9)
mH + MnN,

and the average atomic diameter is

dHd,+dN, (0

2 (0

and n is the number of atoms per unit volume
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P n~k-- (11)
kT

In order to estimate the concentration of nickel at the specimen's surface, equilib-
rium between solid nickel and its vapor is assumed. The further assumption of
ideal gas behavior permits the calculation of concentration of nickel using the ideal

gas law, Eq. 12.

Ceq = Pq (12)
RT

Modified Langmuir-Kundsen Model (based on ideal gas laws)

More straight-forward approach is to assume ideal gas law kinetics. The flux of
atoms through a unit area may be calculated using equatio, 13 [14].

nVJ=n - (13)

4

The average velocity of the atoms is calculated using equation 14 [14].

V= 8kT (14)
irm

Rearrangement of the preceding two equations and equation 6 enables one to
calculate the rate of weight loss per unit area. In a vacuum, the rate of weight loss
is proportional to equilibrium saturation pressure of the material. Conversely, the
rate at which tne material condenses onto the specimen's surface is proportional to

the partial pressure of material in the gas phase. The net rate of weight loss per
unit area is the difference of these two rates [15]. The rate at which the specimen's
surface recedes during thermal treatments may be calculated by dividing weight
loss (with units of g/cm2s) by density,equation 15.

dX (peq p X, M g,t (15)

dt 'pN 27rRT

Assuming ideal behavior, the recession rate of nickel as a function of the partial
pressure of nickel annealed at 1200'C is graphicaly portrayed in Figure 4. Reces-
sion rate approaches zero near the equilibriur, vapor pressure of nickel, viz.,
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Figure 4. Calculated recession rate of a nickel specimen virsus
the environmental partial pressure of nickel.

0.01 Pa. Nickel's recession rate increases rapidly from zero at 0.01 Pa to 3.18Ai/hr.

at a partial pressure of 0.001, and quickly levels off to a pressure independent

value of 3.53g/hr.
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RESULTS AND DISCUSSION

THERMODYNAMIC

The question to be addressed is under what conditions can H2 reduce Ni 3S 2? In

order for hydrogen to react with Ni3S2 it must do so in accordance with equa-

tions 16 and 17, thus forming H2S and HS as reaction products.

Ni3S2 +2H 2 = 3Ni + 2H2S (16)

and

Ni 3S2 + H2 = 3N + 2HS (17)

The equilibrium partial pressures of H2S, HS, and H2 were calculated from the

equilibrium constants obtained for reactions. These equilibrium partial pressures
are plotted as a function of temperature in Figure 5.

Application of LaChatlier's Principle suggest that reducing the partial pressure of

the reaction products below their equilibrium value should drive the reaction

towards completion. Although the equilibrium partial pressures of H2S and HS are
very small, approximately 0.01 atmospheres, the total quantity of sulfur available in

the nickel specimen is also very small; consequently, our calculatiens indicate that

the reaction will take place and equilibrium partial pressures are not likely to be

achieved.

KINETIC

Equations A and 5 were derived for the desulfurization of nickel assuming that the

diffusion of sulfur in nickel was the rate limiting step. Numerical answers to these

equations were obtained using Math Cad 4.0 and are presented in Figures 6,7,8.

Figures 6 and 7 show the position dependent concentration of sulfur in a 0.178 cm

and 0.038 cm (70 and 30 mil) thick specimen hydrogen annealed at 1200'C .After

four hours, the concentration of sulfur at the center of the thinner specimen has

been reduced by 40%; whereas, the concentration of sulfur at the center of the
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Figure 5. The calculated equilibrium partial pressures of HS, H2S,

and H2 during the desulfurization of nickel.

thicker specimen remains virtually unchanged. In fact, it takes almost 24 hours for the
concentration of sulfur at the center of the thicker specimen to be reduced by 40%.

While the compositional profiles shown in Figures 6 and 7 are important to our
understanding of the desulfurization process, the average composition of the
nickel sheet is more readily measured and therefore may be of more practical
significance. Figure 8 show the calculated average composition of 0.038, 0.076,
and 0.178cm (15, 30, and 70 mil) thick sheet annealed at 1200 and 1250C.
Clearly, both reducing the thickness and increasing the temperature enhance
desulfurization.

The amount of sulfur removed from a 0.078cm (30 mil) thick specimen after 20
hours at 12500C is an order of magnitude greater than at 1200°C. However, the
amount of sulfur removed from a 0.178cm (70 mil) thick specimen after 20 hours at
1250'C is only twice as great as that ,emoved at 1200'C. The nonlinear nature of
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Figure 6. The position dependent concentration of sulfur in a 0.1 78cm
(70 mil) thick specimen hydrogen annealed at 1200*C.
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Figure 7. The positimn dependent concentration of sulfur in a 0.038cm
(3OrniI) thick specimen hydrogen annealed at 1200'C.
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desulfurization and the impact of annealing time, temperature, and specimen
thickness on the amount of sulfur remaining after desulfurization is also clearly

illustrated in Figure 8. As one would expect, increasing exposure time, increasing
furnace temperature, and decreasing specimen size results in specimens with

lower concentrations of sulfur.

70 MILS

z

o 0.1

u., 30 MILS

0.01
-j

,,c 15 MILS
Z

-- 1200 C I

1250 C

o0.01 I I

0 5 10 15 20 25

TIME (hours)

Figure 8. The calculated average composition of 0.038, 0.076, and 0.178cm
(15, 30, and 70 mil) thick sheet annealed at 1200 and 1250°C.

SURFACE RECESSION

The loss )f specimen mass during elevated temperature thermal treatments is of

technological importance. The loss may be treated in terms of how rapidly the
suriace of the sp9cimen recedes. Equations 6 through 11 constitute a diffusion
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based model for the approximation of recession rate. The concentration of gas-

eous nickel at the specimen's surface and the diffusion coefficient of nickel in the

gas are estimated. While a recession rate may be calculated, its value is highly
dependent upon atomic flux and atomic flux is position and time dependent. The

model also assumes that diffusion is the primary mass transport phenomenon

responsible for nickel evaporation and neglects the effect of convective flow.

Convective flow would be expected to disturb the compositional gradient and alter

the evaporation rate.

The modified Langmuir-Kundsen Model provides a more straight forward way of

calculating recession rate. The recession rate of a nickel specimen annealed at
1200'C has been calculated to be 3.53g/hr assuming an environmental partial
pressure of nickel equal to zero. As can be observed in Figure 4, recession rate is

a strong function of the partial pressure of nickel near nickel's saturation partial

pressure, but weakly dependent at very low partial pressures.

Table 2. The Calculated Recession Rate of Nickel at 1200*C.

Saturation Partial Calculated Recession
Pressure of Nickel, Pa Rate, p/hr

0.01 3.53
0.02 7.07
0.03 10.6

Recession rate is strongly dependent upon the saturation partial pressure, and the

saturation partial pressure is strongly dependent upon temperature.

Experimental verification of the models for the recession rate of nickel was under-

taken. A sphere of pure nickel was annealed at 1200*C in an atmosphere of

hydrogen for 30 hours. The mass and dimensions of the nickel sphere were
recorded before and after annealing. Examination of the nickel sphere after an-

nealing indicated uniform mass loss. The recession rate for pure nickel was
measured to be 6.41p/hr.
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SUMMARY AND CONCLUSIONS

The thermodynamics of hydrogen desulfurizatioi have been explored. Removal of
sulfur from the nickel sheet is considered viable under non-equilibrium conditions.
That is, the concentration of HS and H2S must be kept low, much less than 0.01
atm. This condition is readily achieved in a large furnace or in a furnace with
flowing hydrogen gas.

The assumption of diffusion controlled kinetics results in pragmatic and technologi-
cal limitations. Ninety nine percent of the sulfur can be removed in 24 hours from
specimens 0.76 mm (30 mils) thick and less; however, only 75 percent of the sulfur
is removed in a 1.78 mm (70 mil thick) specimen subject to the identical treatment.

A model for the diffusion controlled recession rate of nickel has been derived.
Unfortunately, its utility is seriously limited by the sensitivity of atomic flux to
position and time. The modified Langmuir-Kundsen Model is readily applicable
using handbook data for the equilibrium saturation pressure of nickel.
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